Glaze Calculation Additional Notes

ecipe			Un	nity Molecula				
Shows WEIGH	TS of actual glaze r	naterials	Shows the relative NUMBERS OF MOLECULES of oxides used in ceramics needed the glaze recipe					
Recipe example:				Unity Example:				
Satin Base c 10 Potash feldspar - 25.8				RO, R ₂ O	R ₂ O ₃	RO ₂		
Whiting	35.6			KNaO .115	Al2O3 .367	SiO2 1.787		
Kaolin	26.1			CaO .885				
Silica	14.3							
Usually to one decimal place				Usually to 3 decimal places				
Common format is 100% for the base recipe, with				Common format is expressed with the flux column				
	glaze conditioners	and additives in		equaling ONE (Unity).				
	e 100% formula							
Work flow from recipe to Unity;				Work flow from Unity to Recipe: You know the oxides needed and the number of				
You know the ingredients used and the weights								
used of those ingredients.				relative molecules of those oxides.				
If you know th	If you know the TOTAL weight, and you know how				Determine what to solve for first. Usually, the oxide			
much ONE weights, you can divide the total by the				that are only available in insoluble form as complex				
weight of one to find out how many you have.				ingredients that will bring along additional oxides.				
e.g. Pot spar 2	5.8 wt x ^{1 molecule}	= .046 Mol spar		These days, with Gerstly borate in question, the				
e.g. Pot spar 25.8 wt x $\frac{1 \text{ molecule}}{556 \text{ wt spar}}$ = .046 Mol spar				most complicated thing to solve for is boron,				
Now multiply the number of molecules you have times what's in the fired formula of one molecule of				followed by sodium/potassium (usually combined because they behave similarly as KNaO.)				
fired glaze:	mic what the spar	contributes to the		In the unity formula above, the first thing to solve				
.046 mol spar(KNaO●Al2O3●6SiO2)=				for is the KNaO.				
.046 KNaO● ,046 Al2O3● .247 SiO2				We need .115 molecules KNaO.				
Put these num	nhers from spar in	the correct						
Put these numbers from spar in the correct columns of the Unity chart:				Determine from your familiarity with glaze materia				
				-	ıld use as an insolu			
Flux RO R ₂ O	Viscosity R ₂ O ₂	Glassformer		=	e, but many contair			
KII KALI	K 2L J2	H I I I	1 1					

Flux	Viscosity	Glassformer	
RO, R₂O	R ₂ O ₃	RO ₂	
KNaO046	Al2O3 .046	SiO2 .247	

Repeat this for all materials in the glaze. Total like oxides.

To achieve Unity, total the flux column. Divide each number of molecules in all 3 columns by this total. As a check, the numbers in the flux column should now equal one or close to on (from rounding off)

Determine from your familiarity with glaze materials what you would use as an insoluble source of KNaO. Frit is possible, but many contain boron, which we don't need, and frit is more expensive than feldspar or neph sy. Neph sy uses up less of the glaze silica than feldspar, but will deflocculate the glaze. Spar might be a reasonable choice.

If the coefficient of the oxide you want is one in the material you selected, multiply the molecules needed by the fired formula for your ingredient:

.115 KNaO mol needed (KNaO ● Al2O3 ● 6SiO2)= .115 KNaO ● .115 Al2O3 ● .69 SiO2

Subtract each oxide from the needed amounts in your unity formula. (continued)

Glaze Calculation Additional Notes.

Unity Molecular (continued)

RO, R₂O		R ₂ O ₃		RO ₂	
KNaO mol needed	115	Al2O3 mol needed	.367	SiO2 mol needed	1.787
- KNaO from spar	<u>115</u>	- Al2O3 from spar	<u>115</u>	- SiO2 from spar	<u>690</u>
Completed	<u>0</u>	Al2O3 Yet needed	.252	SiO2 yet needed	1.097
CaO .885					

The

second part: once you know the number of molecules of a material you plan to use, you need to multiply that by the weight of ONE to determine the total weight of the material you'll be using.

.115 mol spar x
$$\frac{556 wt spar}{1 mol spar}$$
 = **63.9 weight of feldspar.**

NOTE: if the coefficient of the oxide you're solving for is something other than ONE in the fired formula (e.g. solving for boron by using Gerstley borate (.177 Na2O ● .823 CaO ● ..886 B2O3 ● ..658 SiO2), you must divide the amount needed by the amount supplied to determine how many molecules you'll need to get the desired number of molecules.

Continue on for each oxide the glaze needs until you have solved for all oxides and determined the weights of all materials in your glaze recipe.

Put the recipe into 100 % format. To do this you total the recipe, then divided each material by this total and multiply by 100.